Maturidade e Desempenho em Gestão de Projetos de TI

Renato de Oliveira Moraes - Universidade de São Paulo Fernando José Barbin Laurindo - Universidade de São Paulo

Resumo

Este artigo apresenta um estudo sobre as relações entre desempenho de projetos de TI e a maturidade da organização executante em gestão de projetos. A pesquisa foi conduzida através de um levantamento com 185 respondentes durante ao ano de 2010. O desempenho dos projetos foi avaliado através das duas primeiras dimensões de Shenhar et all (2001) - eficiência do projeto e impacto no cliente. A maturidade em gestão de projetos foi avaliada através do nível de formalização dos processos de gestão de projetos descritos no PMBoK. Os dados foram analisados através de procedimentos estatísticos (análise fatorial, alpha de Cronbach, análise de clusters e análise bivariada) e r evelaram que (i) que as organizações com maturidade superior têm um desempenho superior em seus projetos e, (ii) diferentes dimensões da maturidade tem impactos distintos no desempenho dos projetos de TI.

Palavras-chave: desempenho de projetos de TI, maturidade em gestão de projetos, gestão de projetos de TI.

1. Introdução

Nas últimas décadas, a virtualização das atividades e o s novos modelos de negócios que ela proporcionou, bem como a coordenação em âmbito mundial de grandes cadeias produtivas caracterizam o que muitos autores passaram a chamar de "Nova Economia" (Gereffi, 2001).

Ainda segundo Gereffi (2001), há quem denomine esta nova configuração das atividades econômicas de "economia digital", "economia da inovação", "economia das redes" ou ainda "economia eletrônica" (e-economy).

A tecnologia da informação (TI) foi o elemento que viabilizou este novo cenário, sendo o fator mais visível destas grandes transformações, no qual Castells (1999) usa a expressão "sociedade da informação" para caracterizar os amplos impactos na sociedade. Tapscott (2001) indica como traços distintivos da "nova economia" a perspectiva dos negócios serem baseados em redes e que o conhecimento seria o principal fator de vantagem competitiva.

Portanto, fica clara a grande importância que os produtos e serviços da tecnologia da informação apresentam para as atividades econômicas dos mercados globalizados, em particular para a busca de inovações que permitam as organizações competirem com sucesso.

A idéia de maturidade em gestão de projetos tem despertado grande interesse desde o fi nal da década de 90 (PAULK, 1994). Muito influenciada pelo modelo CMM da Universidade de Carnegie Mellon, os modelos de maturidade em gestão de projetos acenam com a possibilidade de uma consistente melhoria de desempenho dos projetos nas organizações (McGRATH, 1998; GOLDSMITH, 1997; IBBS e KWAK, 1997 e 2000; FINCHER e LEVIN, 1997; REMY,1997; HARTMAN e SKULMOSKI, 1997; KALANTJAKOS, 2001; SCHLICHTER, 2001; MAXIMIANO e RABECHINI, 2002). Ao estudar os modelos de maturidade, a hipótese de que o desempenho dos projetos melhore com o aumento da maturidade da organização em gestão de projetos parece bastante razoável.

Com o objetivo de encontrar alguma evidência empírica desta relação (maturidade x desempenho de projetos) foi realizada uma pesquisa abordando estas questões em projetos de TI. A coleta de

dados aconteceu entre novembro de 2009 e julho de 2010. O método utilizado foi o levantamento com 185 profissionais da área de TI. Este estudo revê o trabalho de Moraes (2004) ampliando a base e o conceito de maturidade usado em uma respondentes maior.

Os dois principais conceitos abordados no estudo foram: (i) maturidade em gestão de projetos e (ii) desempenho de projetos. A maturidade foi abordada de forma bastante restrita - grau de formalização dos processos de gestão de projetos. Apesar dos modelos de gestão de projetos mais populares (como, por e xemplo, OPM3 e PMMM) conceituarem maturidade de forma mais abrangente, considerando outros aspectos organizacionais, todos utilizam a formalização dos processos de gestão como parte da maturidade. Os processos de gestão de projetos utilizados na pesquisa são os descritos no PMBoK. Esta escolha se deve a grande aceitação que este modelo - PMBoK - teve entre nós. A análise dos dados revelou que os elementos da amostra poderiam ser agrupados em três grupos de maturidade (grupo de maturidade inferior, de maturidade média e maturidade superior)

Para medir o de sempenho dos projetos, foi empregada uma versão reduzida do m odelo multidimensional de Shenhar et all (2001). Foram utilizadas as duas primeiras dimensões do modelo proposto por S henrar et all - Eficiência do Projeto e I mpacto no Cliente. Assim, o desempenho do projeto foi tratado como um conceito de duas dimensões - Eficiência do Projeto e Impacto no Cliente. Aqui também, os elementos da amostra puderam ser agrupados em três grupos de desempenho (grupo de desempenho inferior, desempenho intermediário e desempenho superior).

O capítulo 2 apresenta a revisão da literatura utilizado no trabalho, o terceiro capítulo descreve a metodologia empregada e os dados colhidos estão no capítulo 4. A análise e discussão dos dados levantados está no capítulo 5 e as considerações finais, no capítulo 6.

2. Revisão da literatura

Neste capítulo são abordados os dois temas principais do artigo: desempenho de projetos e maturidade em gestão de projetos.

2.1. Desempenho de projetos

Baker Muphy e Fisher (1983) afirmam que o sucesso (ou fra casso) do proj eto corresponde a percepção que os stakeholders têm dele e que os elementos que afetam a percepção de sucesso não são exatamente os mesmos que afetam a percepção de fracasso. Pinto e Slevin (1986) identificaram duas faces do desempenho do projeto. A face interna, ligada a observância de metas de cisto, prazo e qualidade, está muito mais ligada às ações do gerente e da equipe do projeto. Face externa esta relacionada à figura do usuário através dos indicadores uso e satisfação como produto e resolução do problema que originou o proj eto. Esta visão, que sugere duas dimensões do de sempenho de projetos, influenciou vários autores (LIM e MOHAMED,1999; COOKE-DAVIES, 2000; BACCARINI,1999; MUNNS, 1997) a trabalharem com abordagens semelhantes: sucesso do projeto e sucesso do projeto e sucesso do projeto e sucesso do projeto.

Shenhar et al (2001) propuseram uma visão multidimensional do desempenho dos projetos mais abrangente considerando aspectos de curtíssimo, curto, médio e longo prazo do desempenho. Este modelo possui quatro dimensões conforme mostra a Quadro 1

A importância relativa de cada dimensão na percepção de sucesso varia com o tempo de encerramento do projeto (Figura 1). Enquanto a eficiência tem maior importância na avaliação feita logo após a conclusão do proj eto, na avaliação de projetos concluídos a vários anos, sua importância tende a ser muito pequena (MORAES e LAURINDO, 2010).

Dimensões do desempenho	Indicadores			
Eficiência de projete	Meta de prazo			
Eficiência do projeto	Meta de orçamento			
	Desempenho funcional			
	Conformidade às especificações técnicas			
Impacta na cangumidar	Preenchimento das necessidades do cliente			
Impacto no consumidor	Resolução dos problemas do cliente			
	Uso do produto pelo cliente			
	Satisfação do cliente			
Sugarga da nagásia	Sucesso comercial			
Sucesso do negócio	Aumento ou criação de participação de mercado			
	Criação de novo mercado			
Preparação para o futuro	Criação de nova linha de produto			
	Desenvolvimento de nova tecnologia			

Fonte: Shenhar et al (2001)

Uma diferença marcante entre as propostas apresentadas refere-se à discussão em torno da questão da quantidade de conceitos relacionados ao desempenho. Enquanto alguns (LIM e MOHAMED,1999; COOKE-DAVIES, 2000; BACCARINI,1999; MUNNS 1997) referem-se a dois conceitos distintos –sucesso da administração de projeto (foco no processo de desenvolvimento) e sucesso do proj eto (foco no produt o resultante do proj eto) – outros (SHENHAR et al., 2001; BAKER et al. 1983; PINTO e SLEVIN, 1988) e ntendem que existe um elemento único em discussão que possui características multidimensionais, em que a relevância de cada dimensão varia com o tempo.

Neste trabalho será adotada a segunda linha – um conceito único de desempenho – por entender que ela fornece uma perspectiva temporal em relação ao desempenho de projetos mais interessante. Serão utilizadas, especificamente, as duas primeiras dimensões deste modelo para caracterizar o desempenho dos projetos - eficiência do projeto e impacto no cliente.



Figura 1 - Dimensões do desempenho de projetos

Fonte: Shenhar et al (2001)

Uma diferença marcante entre as propostas apresentadas refere-se à discussão em torno da questão da quantidade de conceitos relacionados ao desempenho. Enquanto alguns (LIM e MOHAMED,1999; COOKE-DAVIES, 2000; BACCARINI,1999; MUNNS 1997) referem-se a dois conceitos distintos –sucesso da administração de projeto (foco no processo de desenvolvimento) e

sucesso do proj eto (foco no produt o resultante do proj eto) – outros (SHENHAR et al., 2001; BAKER et al. 1983; PINTO e SLEVIN, 1988) e ntendem que existe um elemento único em discussão que possui características multidimensionais, em que a relevância de cada dimensão varia com o tempo.

Neste trabalho será adotada a segunda linha – um conceito único de desempenho – por entender que ela fornece uma perspectiva temporal em relação ao desempenho de projetos mais interessante. Serão utilizadas, especificamente, as duas primeiras dimensões deste modelo para caracterizar o desempenho dos projetos - eficiência do projeto e impacto no cliente.

2.2. Maturidade em gestão de projetos

A idéia de maturidade em gestão de projetos é fortemente influenciada pelo modelo CMM - Capability Maturity Model da Universidade de Carnegie Mellon (PAULK, 1994) desenvolvido sob o patrocínio do D epartamento de Defesa Norte-Americano. Este modelo defini cinco níveis e maturidade em processos de desenvolvimento de software. De maneira geral, os modelos propostos de maturidade em gestão de projetos (GOLDSMIRH, 1997; IBBS e KWAK, 1997 e 2000; REMY, 1997, SCHILICHTER, 2001) usam a estrutura do CMM substituindo os processos de desenvolvimento de software deste modelo pelos processos de gestão de projetos descritos pelo PMBoK.

O conceito de maturidade em gestão de projetos é ligado ao desenvolvimento contínuo de competências especificas em gestão de projetos (KALANTJAKOS, 2001 e SCHLICHTER, 2001), o que sugere a i déia de ser possível estabelecer, de um modo geral, algum tipo de modelo direcionador assim como o PMBoK tem sido.

A idéia de maturidade de processos está associada ao conceito de estabilidade de processos. Processos estáveis são processos livres de variações e q ue são executadas de forma consistentemente homogênea. A formalização dos processos reflete essa estabilidade como reflete o bordão do modelo ISO 9.000 "faça o que escreve e escreva o que faz" (ANOTINIONI e ROSA, 1995).

Nessa visão, a qualidade de um produto é determinada pela qualidade do processo que o gerou. Assim, a qualidade do processo de desenvolvimento do proj eto de software irá condicionar a qualidade do software gerado. Essa é a mesma idéia por trás dos modelos de garantia da qualidade como ISO 9.000-3, CMM e ISO 15.504. Nesses modelos, a qualidade do processo é obtida pela estabilidade dos processos. Dessa forma, quando uma organização inicia sua certificação, os auditores procuram verificar se os processos prescritos nesses modelos existem. Além da existência desses processos, são confrontados os seus registros com suas práticas (ANOTINIONI e ROSA, 1995).

Neste trabalho não é utilizado nenhum modelo de maturidade em particular. Esta opção traria o ônus de realizar a avaliação da maturidade dos elementos da amostra e a amostra teria que conter elementos de diferentes níveis de maturidade segundo os critérios do modelo escolhido.

Assim, optou-se por empregar o grau de formalização dos processos de gestão de projetos descritos pelo PMBOK como uma medida da maturidade da organização.

2.3. Project Management Body of Knowledge - PMBoK

O PMBoK (Project Management Body of Knowledge, 2004) é o re sultado do esforço do PMI (Project Management Institute) em registrar e documentar uma base de conhecimentos para a atividade de Gestão de Projetos. A primeira versão foi publicada em 1984 e revista em 1987, 1996, 2000 e 2004. Apesar de esforços similares, como os realizados na Suíça e na Austrália, essa parece ser principal referência em vigor com mais de 450.000 exemplares em circulação. Os vários

modelos de maturidade em gestão de projetos utilizam o PMBoK, em maior ou menor grau, como referência conceitual.

O PMBoK descreve um conjunto de processos agrupados em áreas de conhecimento, associados com a G estão de Projetos (Figura 2). O conhecimento necessário ao bom desempenho de um gerente de projeto, como destaca o PMBoK envolve conhecimentos relacionados a:

- Gerência Geral:
- Conhecimento e p ráticas específicas da área em que o proj eto está sendo desenvolvido (engenharia civil, computação, farmacologia, etc.); e
- Gerência de Projetos.

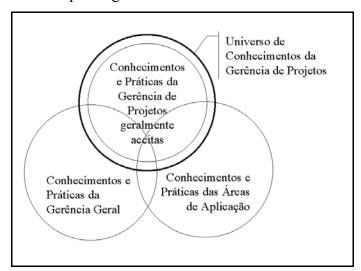


Figura 2 - Disciplinas gerenciais relacionadas à Gestão de Projetos

Fonte: PMBoK (2004)

A compilação desses conhecimentos e práticas geralmente aceitas de Gestão de Projetos gerou o PMBoK. Em função de sua proximidade temática, esses conhecimentos foram agrupados em 9 grandes áreas: (i) Gestão da Integração; (ii) Gestão do Escopo; (iii) Gestão do Tempo; (iv) Gestão do Custo; (v) Gestão da Qualidade; (vi) Gestão dos Recursos Humanos; (vii) Gestão das Comunicações; (viii) Gestão dos Riscos; e (ix) Gestão das Aquisições.

Os 44 processos de gestão podem ser classificados, inclusive, em função do ciclo de vida do projeto. Dessa forma, os processos estão divididos em: (i) Processos de iniciação; (ii) Processos de planejamento; (iii) Processos de execução; (iv) Processos de controle; e (v) Processos de encerramento.

A maneira pela qual esses grupos de processos se relacionam está ilustrada na Figura 3. O Quadro 2 contém a descrição de cada um desses grupos.

Quadro 2 - Áreas de conhecimento em gestão de projetos

Áreas do Conhecimento	Processos				
	Termo de abertura do projeto				
	Declaração preliminar do escopo do projeto				
	Desenvolver o plano de gerenciamento do projeto				
Gestão da Integração	Orientar e gerenciar a execução do projeto				
- ,	Monitorar e controlar o trabalho do projeto				
	Controle integrado de mudanças				
	Encerrar o projeto				
	Planejamento do escopo				
	Definição do escopo				
Gestão do Escopo	Criar EAP				
-	Verificação do escopo				
	Controle do escopo				
	Definição da atividade				
	Sequenciamento de atividades				
Gestão do Tempo	Estimativa de recursos da atividade				
Gestao do Tempo	Estimativa de duração da atividade				
	Desenvolvimento do cronograma				
	Controle do cronograma				
	Estimativa de custos				
Gestão do Custo	Orçamentação				
	Controle de custos				
	Planejamento da qualidade				
Gestão da Qualidade	Realizar a garantia da qualidade				
	Realizar o controle da qualidade				
	Planejamento de recursos humanos				
Gestão dos Recursos	Contratar ou mobilizar a equipe do projeto				
Humanos	Desenvolver a equipe do projeto				
	Gerenciar a equipe do projeto				
	Planejamento das comunicações				
Gestão das Comunicações	Distribuição das informações				
destao das comunicações	Relatório de desempenho				
	Gerenciar as partes interessadas				
	Planejamento do gerenciamento de riscos				
	Identificação de riscos				
Gestão dos Riscos	Análise qualitativa de riscos				
Gestao dos Riscos	Análise quantitativa de riscos				
	Planejamento de respostas a riscos				
	Monitoramento e controle de riscos				
	Planejar compras e aquisições				
	Planejar contratações				
Gestão das Aquisições.	Solicitar respostas de fornecedores				
Ocomo das Aquisições.	Selecionar fornecedores				
	Administração de contrato				
Fonte: PMRoV (2004)	Encerramento do contrato				

Fonte: PMBoK (2004)

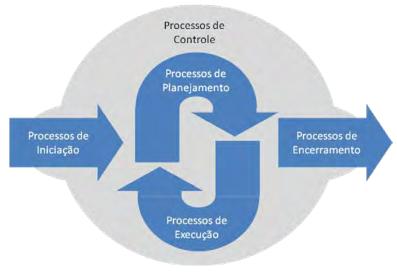


Figura 3 - Tipos de processos de gestão de projetos

Fonte: PMBoK(2004)

3. Metodologia

A partir da revisão bibliográfica foi elaborado um questionário para coleta de dados com 3 partes:

- Identificação do entrevistado
- Identificação e caracterização da empresa. Nesta parte também é i nformado o grau de formalização dos processos de gestão de projetos dentro da organização
- Caracterização do projeto (desenvolvimento e desempenho). Aqui é feita uma caracterização dos elementos relacionados ao desenvolvimento do projeto e n ível do desempenho em termos da eficiência do projeto e do impacto no usuário.

O questionário foi enviado para cerca de 3.500 mil profissionais de TI que o responderam através de email (com um formulário anexado) e através de um site que hospedou o questionário. Foram obtidos 185 questionários válidos cujo processo de analise incluía:

- Análise fatorial para (a) reduzir os indicadores de desempenho ás duas dimensões de desempenho de projetos do modelo de Shenhar e D vir (2009) e (b) re duzir o grau de formalização dos processos de gestão projetos a dimensões de maturidade em gestão projetos;
- Análise bivariada entre os fatores gerados na etapa anterior para avaliar a correlação entre maturidade e desempenho;
- Análise de clusters para agrupar os respondentes em função dos diferentes níveis de maturidade em gestão de projetos; e
- Análise de variância para verificar a existência de diferença (e o padrão desta diferença) de desempenho entre os grupos gerados na etapa anterior.

4. Resultados

4.1. Análise Fatorial do Desempenho

As oito variáveis relacionadas ao desempenho do projeto foram submetidas à análise fatorial e os resultados foram bastante satisfatórios. A medida de adequação da amostra de Kaiser-Meyer-Olkin (KMO) foi de 0,871. O que, segundo Hair et all (2000), pode ser considerado excelente. Outro sinal positivo foi que nenhuma variável teve comunalidade extraída inferior a 0,5.

Foram extraídos dois fatores que explicam 75,5% da variação original das variáveis. O segundo fator, cujo eigenvalue (autovalor) é inferior a 1 (mas próximo de 1), foi extraído porque usou-se neste estudo uma definição de desempenho de projetos ter sido adotado o modelo de Shenhar et all (2201), que possui duas dimensões. Nestas condições, os fatores extraídos são consistentes como o modelo de desempenho adotado da literatura.

Tabela 1- Variação extraída na análise fatorial das variáveis de desempenho

	Initial Eigenvalues			Initial Eigenvalues Extraction Sums of Squared Loadings			Rotation Sums of Squared Loadings		
Compo		% of	Cumulative		% of	Cumulati			
nent	Total	Variance	%	Total	Variance	ve %	Total		
1	5,075	63,432	63,432	5,075	63,432	63,432	4,748		
2	,962	12,021	75,453	,962	12,021	75,453	3,331		
3	,605	7,562	83,016						
:	:	:	:						
8	,145	1,812	100,000						

Extraction Method: Principal Component Analysis.

Optou-se por uma rotação oblíqua pois a literatura sugere, fortemente, que estas duas dimensões do desempenho de projetos não são independentes. Elas possuem algum grau de correlação. Os resultados estão abaixo.

O fator 2 c orresponde a primeira dimensão do modelo de Shenhar et al (2001) - Eficiência do Projeto, e o fator 1 corresponde a segunda dimensão - Impacto no Usuário.

A confiabilidade interna, medida através do Alpha de Crombach, também apresentou excelentes resultados. Ela foi de 0,917 para o fator 1 (Eficiência do Projeto) e de 0,778 para o fator 2 (Impacto no Usuário)

Quadro 3 - Matriz padrão na análise fatorial das variáveis de desempenho

	Compo	onent
	1	2
Preenchimento das necessidades do cliente	,934	-,048
Resolução dos problemas do cliente	,933	-,077
Uso do produto pelo cliente	,873	-,082
Conformidade às especificações técnicas	,768	,129
Satisfação do cliente	,690	,235
Desempenho funcional	,505	,441
Meta de orçamento	-,076	,935
Meta de prazo	,123	,822

4.2. Análise Fatorial da Maturidade

As 44 variáveis relacionadas ao grau de formalização dos processos de gestão de projetos descritos no PMBoK foram submetidas a análise fatorial. O valor do KMO foi bastante alto (0,954) assim como as comunalidades das variáveis (todas acima de 0,5).

Tabela 2 - Variação extraída na análise fatorial das variáveis de maturidade em gestão de projeto

Total V	Total Variance Explained								
				Extractio	Rotation Sums of				
	Init	ial Eigenval	ues		Loadings		Squared Loadings		
Comp		% of	Cumul		% of	Cumula			
onent	Total	Variance	ative %	Total	Variance	tive %	Total		
1	28,428	64,609	64,609	28,428	64,609	64,609	16,178		
2	2,659	6,043	70,652	2,659	6,043	70,652	18,352		
3	1,685	3,829	74,481	1,685	3,829	74,481	22,349		
4	1,177	2,675	77,156	1,177	2,675	77,156	15,093		
5	1,036	2,355	79,511	1,036	2,355	79,511	15,581		
6	,998	2,267	81,778	,998	2,267	81,778	19,069		
7	,843	1,915	83,693						
8	,759	1,726	85,419						
:	:	:	::						
44	,016	,036	100,00						
			0						

Extraction Method: Principal Component Analysis

Tabela 3 - Matriz padrão na análise fatorial das variáveis de de maturidade em gestão de projeto

	Compo			onent		
	1	2	3	4	5	6
Realizar o controle da qualidade	,594					
Distribuição das informações	,555					
Realizar a garantia da qualidade	,554					
Gerenciar as partes interessadas	,546					
Planejamento das comunicações	,534					
Desenvolver a equipe do projeto	,510					
Planejamento da qualidade	,482					
Relatório de desempenho	,454					
Contratar ou mobilizar a equipe do projeto	,441					-,404
Selecionar fornecedores		-,969				
Solicitar respostas de fornecedores		-,907				
Administração de contrato		-,895				
Encerramento do contrato		-,853				

			ı		ı.
Planejar contratações	-,80)8			
Planejar compras e aquisições	-,80)4			
Análise qualitativa de riscos		-,961			
Planejamento de respostas a riscos		-,923			
Identificação de riscos		-,915			
Análise quantitativa de riscos		-,892	,		
Planejamento do gerenciamento de riscos		-,890)		
Monitoramento e controle de riscos		-,870)		
Estimativa de custos			-,811		
Orçamentação			-,787		
Controle de custos			-,725		
Desenvolver a declaração do escopo preliminar do projeto				,750	
Desenvolver o termo de abertura do projeto				,683	
Encerrar o projeto				,602	
Desenvolver o plano de gerenciamento do projeto				,600	
Orientar e gerenciar a execução do projeto				,497	
Monitorar e controlar o trabalho do projeto				,484	
Definição do escopo			-,414	,448	
Planejamento do escopo				,442	
Verificação do escopo				,437	
Controle integrado de mudanças				,414	
Criar EAP – estrutura analítica do projeto (WBS)					
Controle do escopo					
Estimativa de duração da atividade					-,783
Seqüenciamento de atividades					-,781
Desenvolvimento do cronograma					-,761
Definição da atividade					-,708
Estimativa de recursos da atividade					-,673
Controle do cronograma					-,635
Gerenciar a equipe do projeto					-,477
Planejamento de recursos humanos					-,427
*					

Obs: Foram omitidas as cargas fatoriais inferiores a 0,4 Extraction Method: Principal Component Analysis. Rotation Method: Oblimin with Kaiser Normalization.

A análise das cargas fatoriais sugere o significado dos fatores extraídos. O fator 1 está relacionado a processos de gestão de diferentes áreas. Como não uma concentração clara de processo de uma área em particular ele será nominado de maturidade geral em gestão de projetos. O fator 2 está claramente relacionado com os processos de gestão de fornecedores. Portanto, ele será nominado de maturidade em gestão de fornecedores. O fato das cargas fatoriais serem negativas não é u m problema. Nas análises subsequentes será considerado que o valor deste fator deste fator significaria a imaturidade e não a maturidade. O fator 3 refere-se a maturidade em gestão de riscos. O fator 4 envolve processos de gestão da integração e do escopo do projeto e será chamado como tal e o fator 5 refere-se a maturidade em gestão do tempo

Tabela 4 – Dimensões da maturidade identificadas na análise fatorial

Fator	Nome	Sinal	Alpha de Cronbach
1	Maturidade da Gestão Geral de Projetos	(+) Maturidade	0,960
	Maturidade da Gestão de Fornecedores	(-) Imaturidade	0,970
3	Maturidade da Gestão de Riscos	(-) Imaturidade	0,981
4	Maturidade da Gestão de Custos	(-) Imaturidade	0,920
5	Maturidade da Gestão da Integração e do Escopo	(+) Maturidade	0,952
6	Maturidade da Gestão do Tempo	(-) Imaturidade	0,953

Fonte: Elaborado pelos autor

4.3. Análise Bivariada - Correlação entre Desempenho e Maturidade

A Tabela 3 mostra a correlação entre as dimensões da maturidade e as dimensões do desempenho através do valor e da significância do coeficiente de correlação de Pearson. A análise dos dados deve considerar que certas dimensões da maturidade foram obtidas através de cargas fatoriais negativas. Assim, a m aturidade (o inverso da imaturidade) da gestão de fornecedores está positivamente correlacionada com o desempenho dos projeto. Na verdade, existem evidências de correlação entre todas as dimensões da maturidade em gestão de projetos com as dimensões do desempenho dos projetos. Para verificar o padrão deste relacionamento foram feitas as análises seguintes.

Tabela 5 - Correlação entre as dimensões do desempenho e as dimensões da maturidade

	Dimensões do Desempenho			
Dimensões da Maturidade	Dimensões da Maturidade			
(±) Mat Gastão Garal do	(+) Mat Gestão Geral de Pearson Correlation			
		,275	,370	
Projetos	Sig. (2-tailed)	,000	,000	
(-) Mat Gestão de	Pearson Correlation	-,332	-,422	
Fornecedores	Sig. (2-tailed)	,000	,000	
(-) Mat Gestão de Riscos	Pearson Correlation	-,343	-,448	
	Sig. (2-tailed)	,000	,000	
(-) Mat Gestão de Custos	Pearson Correlation	-,336	-,498	
	Sig. (2-tailed)	,000	,000	
(+) Mat Gestão da	Pearson Correlation	,248	,403	
Integração e do Escopo	Sig. (2-tailed)	,001	,000	
(-) Mat Gestão do Tempo	Pearson Correlation	-,198	-,370	
	Sig. (2-tailed)	,010	,000	

Fonte: Elaborado pelos autor

4.4. Análise Clusters da Maturidade

Inicialmente, foi utilizado um método hierárquico de análise de cluster para determinar o número de grupos a serem formados. A análise do roteiro de aglomeração indicou a formação de grupos. A formação dos clusters foi feita através do método K-means. O resultado (mostrado na tabela abaixo) é um conjunto de grupos semelhante aos modelos de maturidade em gestão de projetos. São três grupos de maturidade crescente - nos modelos de maturidade são cinco grupos em geral.

Tabela 6 - Resultados da análise de clusters

	Centro dos Clusters				
	1 2 3				
	Maturidade	Maturidade	Maturidade		
Fatores empregados na análise de clusters (K-means)	Intermediária	Inferior	Superior		
(+) Maturidade da Gestão Geral de Projetos	-0,25138	-0,86611	0,908532		
(-) Maturidade da Gestão de Fornecedores	0,128415	0,912299	-0,83742		
(-) Maturidade da Gestão de Riscos	0,104822	1,103238	-0,96844		
(-) Maturidade da Gestão de Custos	0,049962	0,876622	-0,7403		
(+) Maturidade da Gestão da Integração e do Escopo	0,245226	-0,96646	0,55288		
(-) Maturidade da Gestão do Tempo	-0,12398	1,062802	-0,73572		
Quantidade de elementos em cada grupo	64	58	73		

Fonte: Elaborado pelos autor

4.5. Análise de Variância entre os Clusters da Maturidade

A comparação da maturidade média entre os 3 grupos através da análise de variância (ANOVA) mostra que o de sempenho dos projetos no grupo de maturidade inferior é menor que nos outros grupos, tanto em termos da eficiência como do impacto. Não foi encontrada evidência de diferença do desempenho entre os outros dois grupos (maturidade intermediária e maturidade superior) .

Desempenho Inferior

October 1 - Mat. Superior

October 1 - Mat. Superior

October 2 - Mat. Inferior

October 3 - Mat. Mediana

Fonte: Elaborado pelos autor

Tabela 7 - ANOVA

		Sum of		Mean		
		Squares	df	Square	F	Sig.
Impacto no	Between Groups	25,059	2	12,529	15,446	,000
Usuário	Within Groups	136,276	168	,811		
	Total	161,334	170			
Eficiência do	Between Groups	38,776	2	19,388	24,863	,000
Projeto	Within Groups	131,002	168	,780		
	Total	169,778	170			

Fonte: Elaborado pelos autor

5. Análise dos Dados

Na amostra foi encontrada correlação estatisticamente significante entre maturidade e desempenho em todas as dimensões destes dois conceitos. Contudo, apesar de estatisticamente significante, as correlações observadas não eram altas. O maior valor encontrado do coeficiente de Pearson foi de 0,522 (entre eficiência do projeto - dimensão do desempenho - e a maturidade interna, que exclui os processos de gestão da aquisição), o que significa que apenas 27% de comportamento compartilhado entre os dois construtos. Isto sugere que existem outros fatores além da maturidade, não abordados no estudo, que também influenciam o desempenho dos projetos. Mas é importante destacar que, mesmo que baixa, a correlação entre maturidade e desempenho foi observada na amostra. Ao analisar os grupos de grupos de maturidade em gestão de projetos, foi encontrada diferença estatisticamente significante de desempenho. No grupo de maturidade inferior o desempenho dos projetos, tanto em termos de eficiência como em termos de impacto no cliente, foi inferior aos dos outros 2 g rupos (maturidade intermediária e superior). Isto sugere que a contribuição da maturidade para o desempenho dos projetos tem um limite. Para organizações mais imaturas um aumento da maturidade em gestão de projetos contribui mais significativamente para a melhoria do desempenho dos projetos. Em organizações não imaturas esta relação não foi observada já que nos grupos de maturidade intermediária e superior foi observado o mesmo nível de desempenho dos projetos.

Assim, parece que organizações diferentes devam buscar níveis de maturidade adequados a sua situação, pelo menos do ponto de vista do nível de desempenho dos projetos. Um grau de maturidade superior ao adequado não iria se traduzir numa maior taxa de sucessos dos projetos. A identificação deste nível adequado de maturidade não foi objeto desta pesquisa e o autor desconhece na literatura trabalhos desta natureza. Resta aos profissionais de TI o us o da experiência e do conhecimento da organização em que atuam para identificar o investimento adequado na melhoria da maturidade em gestão de projetos.

6. Considerações Finais

Este artigo apresentou um estudo sobre as relações entre maturidade em gestão de projetos e desempenho de projetos de TI. O levantamento com 185 profissionais da área revelou que existem relações estatisticamente significativas entre as dimensões do desempenho com as diferente dimensões da maturidade em gestão de projetos identificadas nas análises dos dados. Apesar da evidência estatística, a relevância prática pode ser considerada baixa, conforme revelou a análise dos dados (correlação bivariada e regressão linear múltipla). Isto sugere fortemente que outros

elementos condicionantes do desempenho não foram tratados. De fato, a literatura sobre gestão de projetos é vasta em relação aos elementos condicionantes de desempenho dos projetos. Como estes elementos não foram abordados neste estudo, poder-se-ia inferir que a não consideração destes elementos (condicionantes de desempenho encontrados na literatura) seja a causa do baixo poder de determinação encontrado nas análises dos dados.

Pode-se observar também que existe uma diferença (para menor) do desempenho dos projetos nas organização de maturidade inferior em relação aos outros grupos (de maturidade intermediária e maturidade superior). Desta forma, como uma consequência deste trabalho para os profissionais da área, é que as organizações com um baixo nível de formalização de seus processos de gestão de projetos são as que mais têm a ganhar com os esforços de aumento da maturidade em gestão projetos.

Como desdobramentos futuros deste estudo, pretende-se avaliar como a maturidade afeta a relação (importância relativa) dos elementos condicionantes de desempenho com o desempenho dos projetos de TI. Um estudo desta natureza ajudaria a compreender melhor os (eventuais, outros benefícios da maturidade em gestão de projetos.

Referências Bibliográficas

ANTONIONI, L. e ROSA, N. B. **Qualidade em software**: manual de aplicação da ISO 9000. São Paulo: Makron Books, 1995.

BACCARINI, David The Logical Framework Method for Defining Project Success In: **International Journal of Project Management** vol. 30, no. 4, pp 25-32, 1999.

BAKER, Bruce N., MURPHY, David C. e FISHER, Dalmar "Factors Affecting Project Success" In CLELAND, D. I. & KING, W. R. **Project Management Handbook**. New York: John Wiley, 1983

COOKE-DAVIES, T. The real success factors on projects. In **International Journal of Project Management** vol. 20, pp. 185-190, 2000

FINCHER, A. and LEVIN, G., **Project Management Maturity Model**. Project Management Institute 28th Annual Seminar/Symposium, Chicago, Ill., 1997, pp. 48-55.

GOLDSMITH, L. **Approaches Towards Effective Project Management**, Project Management Maturity Model. Project Management Institute 28th Annual Seminar/Symposium, Chicago, Ill., 1997, pp. 49-54.

HAIR JR, J. F. Análise Multivariada de Dados. Porto Alegre: Ed Bookman, 2009

HARTMAN, F. T. & SKULMOSKI, G. **Project Management Maturity**. Project Management Journal, 1998, pp. 74-78

IBBS, W. e KWAK, Y.H. **The benefits of Project Management: Financial and Organizational Rewards to Corporations**. Project Management Institute. Sylvia, N.C., 1997.

IBBS, W. e KWAK, Y.H. Assessing Project Management Maturity. **Project Management Journal**, vol. 31, no. 1, pp. 32-43, March 2000

KALANTJAKOSN. J. Assessing Organizational Project Management Maturity. **Proceedings of the Project Management Institute Annual Seminars & Symposium**, USA: Nashville, Tennessee, Nov. 2001

LIM, C. S. e MOHAMED, M. Z. Criteria of project success: an exploratory re-examination. In **International Journal of Project Management** vol. 17, no. 4, pp. 243-248, 1999

LOCKE, D. Project Management. New York: St Martins Press, 1984

MAXIMIANO, A. C. A. E RABECHINI Jr, R. **Maturidade em Gestão de Projetos – Análise de um caso Proposição de um Modelo**. XXII Simpósio d Gestão da Inovação Tecnológica. Salvador, 2002

McGRATH, Michael E. **Revving up product development**. IN Electronic Business Magazine, january 1998, p. 36

MUNNS, A. K. & BJEIRMI, B. F. The role of project management in achieving project success. In: **International Journal of Project Management** vol 14 no. 2 pp. 81-87, 1997.

MORAES, R. O. Condicionantes de Desempenho dos Projetos de Software e a Influência da Maturidade em Gestão de Projetos. 2004. Tese (Doutorado em Administração de Empresas). Programa de Pós-Graduação em Administração de Empresas. Faculdade de Economia, Administração e Contabilidade da Universidade de São Paulo, São Paulo - SP

MORAES, R. O.; LAURINDO, F. J. B. . Avaliação de resultados de projetos de TI. . In. ENCONTRO NACIONAL DE ENGENHARIA DE PRODUÇÃO, 30, 2010, S ão Carlos. **Anais... São** P São Carlos: ABEPRO, 2010.

PAULK, Marc C. et all **The Capability Maturity Model: Guidelines for Improving the Software Process** Addison-Wesley, 1994.

PINTO, J. K. & SLEVIN, D. P. Project Success: Definitions and Measurement Techniques In: **International Journal of Project Management**, 1988

PINTO, J. K. & SLEVIN, D. P. Critical Success Factors Across the Project Life Cycle In: **International Journal of Project Management**, 1986

PMBOK **A guide to the project management body of knowledge** PMI - Project Management Institute, 2004

REMY, R. Adding focus to improvement efforts with PM3. In PM Network, July, 997

SHENHAR, A. et all Project success: a multidimensional strategic concept. In **Long Range Planning**, no. 34, pp. 699-725, 2001

SCHLICHTER, J. PMI's Organizational Project Management Maturity Model: Emerging Standards. **Proceedings of the Project Management Institute Annual Seminars & Symposium**, USA: Nashville, Tennessee, Nov. 2001