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Abstract 
  This paper aims to understand some of the mechanisms which dominate the phenomenon of 

knowledge diffusion in the process that is called ‘interactive learning’. We examine how knowledge spreads 

in a network in which agents have ‘face-to-face’ learning interactions. We define a social network structured 

as a graph consisting of agents (vertices) and connections (edges) and situated on a grid which resembles the 

geographical characteristics of the metropolitan area of Greater Santiago de Chile. The target of this 

simulation is to test whether knowledge diffuses homogeneously or whether it follows some biased path 

generating geographical divergence between a core area and a periphery. We also investigate the efficiency 

of our ‘preference’ model of agent decision-making and show that this system evolves towards a small-world 

type network. 
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Small World Dynamics and the Process of Knowledge Diffusion. The Case of 
the Metropolitan Area of Greater Santiago de Chile 

 
 

That the advance of knowledge lies at the core of modern growth process is more than an 
inference from the growth accounts. It is a perception enforced by well over a century of 

common experience. Economists have therefore applied themselves to learning more about the 
ways that practical knowledge is gained and exploited. A new outlook has developed and 

spread. It is not yet well defined. 
 

Moses Abramovitz, 
Thinking about growth, 

Cambridge University Press, 1989. 
 
1.   INTRODUCTION 

The nexus linking education and personal income is well established in the labour 

economic literature. It has been thoroughly investigated both theoretically and empirically 

and its main conclusion is that investments in human capital have a positive impact on 

one’s future income. The learning process through which labour force builds up human 

capital has then been divided into schooling and on-the-job experience.  

In this work, following Morone (2001), we argue that the process of human capital 

creation should be decomposed into two distinct learning processes: individual learning 

and interactive learning. The first is basically the learning process which takes place at 

school or through training courses, while the second, neglected until now, is the learning 

process which takes place through simply every-day interactions which each person has 

with her/his acquaintances.  

The focus of this work is precisely this second learning process. We will study how 

interactive learning affects the knowledge creation in a middle-income country like Chile. 

We decided to focus on the Chilean case because of its particularly biased wage 

distribution and its exponential returns to schooling.1  

The main target of this work is to model one possible type of interactive learning 

known as ‘face-to-face’ learning. Departing from previous works on knowledge diffusion 

we aim to develop a model which takes into consideration the complexity of the process of 

knowledge acquisition. In doing so we define a cognitive structure for each agent 

(cognitive map) and use this structure to define the process of knowledge acquisition.  

The paper is structured as follows: section 2 revises briefly the existing literature on 

informal knowledge diffusion. In section 3 we present a formal model which investigates 

how knowledge spreads among agents situated on a grid composed of several 

neighbourhoods. Section 4 develops the concept of Cognitive Map (CM) and the processes 

of knowledge diffusion and accumulation in the presence of a complex cognitive structure. 
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Then section 5 introduces the case study and shows the results of the simulation exercise. 

Finally, Section 6 concludes the paper. 

 

2.   REVIEWING LITERATURE ON INTERACTIVE LEARNING 

The learning process which takes place simply by interacting within a neighbourhood 

can be considered as a social externality. For instance, the diffusion of a new technology is 

a positive externality, which is generated by the informal interaction of entrepreneurs. 

Moreover, learning from neighbours can represent a negative externality. Consider, for 

instance, the problem of children in a poor neighbourhood choosing whether to pursue 

higher education or drop out of school. If in such an environment the most popular 

decision is dropping out, this would represent a negative externality for those children 

facing the choice subject to social influence.  

Most studies found that social learning plays a positive role in determining the long-

term equilibrium. Ellison and Fudenberg (1993) developed a model in which agents 

consider the experience of neighbours in deciding which of two technologies to use.  Their 

work is structured around two simple models of the learning environment. First, they 

consider a homogeneous population which reacts identically to the two technologies, with 

one technology being superior to the other; subsequently they introduced heterogeneous 

agents which consider the two technologies in different ways. In the first case the issue is 

whether the better technology will be adopted, while in the second case the question is 

whether the two technologies will be adopted by the appropriate players. In both 

environments agents use exogenously specified ‘rules of thumb’ that ignore historical data 

but might incorporate a tendency to use the more popular technology. Under this 

condition, the outcome of their work suggests that “even very naïve learning rules can lead 

to quite efficient long-run social states”, but adjustment can be slow when a superior 

technology is first introduced (Ellison and Fudenberg, 1993: 637).  

In a subsequent paper (1995), the authors focused their attention on the patterns of 

information exchanges, studying the way in which word-of-mouth communication 

contributes to aggregate information of individual agents. They defined a nonstrategic 

environment composed of homogeneous agents which face the decision of choosing one of 

two products. Their findings show how “despite the naïve play of individuals, this type of 

information flow may lead to efficient learning on the social level, and that social learning 

is often most efficient when communication between agents is fairly limited” (Ellison and 

Fudenberg, 1995: 120).  



 3

Bala and Goyal (1995) analysed social learning in an organisational environment in 

which agents have a time-limited life experience and heterogeneous beliefs. Departing 

from the original work of Kiefer (1989), they consider the case of a monopolistic firm 

attempting to calculate its true demand curve. “The learning process – adopted by the 

authors – is then one in which the sequence of managers learn about the demand curve 

through their own actions as well as the experience of earlier managers” (Bala and Goyal, 

1995: 303). In this case again, learning from others augments the probability of converging 

to the set of ex-post optimal actions.  

Subsequently, Bala and Goyal (1998) investigated the relation between the structure of 

social networks and learning processes in a world where agents learn from currently 

available social information, as well as from past experiences (as opposed to the previous 

works of Ellison and Fudenberg). Their findings show that the structure of the 

neighbourhood has important implications for the likelihood of adopting new technologies, 

for the coexistence of different practices, and for the temporal and spatial patters of 

diffusion in a society. More precisely, they showed how neighbourhood structures 

characterised by the presence of locally independent agents (i.e. agents with non-

overlapping neighbourhoods) generally facilitate social learning.  

A common way of modelling the mechanisms of social learning and technology 

diffusion makes use of evolutionary game theory. Several authors examined local 

interaction games2 in which each person’s payoff depends on the actions of his/her 

neighbours. Most of these studies pointed out that local interaction might result in the 

diffusion of personal behaviours in certain dynamic systems. In a recent work, Morris 

(2000) extended this finding, linking the occurrence of social learning (that he calls 

contagion) to some qualitative properties of the interaction system such as cohesion, 

neighbour growth, and uniformity. Chwe (2000) modelled social learning as dependent on 

both social structure and individual incentives. In this way he obtained a model that he 

called a ‘local information game’ as, he argued, “locality is represented by information and 

not necessarily by payoffs […]. Local interaction games make sense for local coordination, 

such as keeping our street clean; for ‘big’ coordinations such as political changes, 

informational locality is more appropriate” (Chwe, 2000: 11).  

Along with the speed of new technologies’ diffusion, several researchers have focused 

on the impact of peers’ behaviour upon individual decisions in several areas such as 

propensity to crime, use of drugs, school dropout and school attainments. For instance, the 

role model provided by good students might generate positive spillovers in the sense that 



 4

peer students may imitate successful behaviours. Nonetheless, “when social interactions 

act as strategic complementarities between agents, multiple equilibria may occur in 

absence of any coordination mechanisms” (Brock and Durlauf, 1995: 1). The school-based 

interaction was studied by Benabou (1993) in his model of occupational and residential 

choices. The author shows that when the cost of individual education is a decreasing 

function of investment decision of one’s neighbours, neighbourhoods can exhibit multiple 

equilibria in the steady-state level of human capital.  

Durlauf (1996) shows how these spillovers can have significant distributional effects 

generating stubborn inequality in the long run. Income inequality “emerges through the 

interaction of positive feedback structure between members of a common neighbourhood 

with the tendency of families to stratify themselves endogenously into economically 

homogeneous neighbourhoods” (Durlauf, 1996: 505).  

Positive feedbacks means, in the words of Durlauf, “that the income distribution of 

neighbourhoods will strongly affect the future economic status of children within the 

community” (Durlauf, 1996: 505). A similar argument was raised by Gleaser, Sacerdote 

and Scheinkman (1996), while arguing that social interactions can explain large 

differences in community crime rates. 

What all the studies considered so far have in common is the fact that learning from 

neighbours occurs and that under certain conditions it leads to (highly unequal) multiple 

equilibria. Yet, none of these studies goes beyond a binary definition of learning. If there is 

a new technology, agents can either learn of its existence, and hence adopt it, or stay in 

their initial state of ignorance. Pupils that live in ‘good’ neighbourhoods have good 

chances of imitating good role models, while pupils which live in ‘bad’ neighbourhoods 

are more likely to imitate bad role models and hence end-up in perpetuating the initial 

differences. In other words, learning is defined and modelled as an imitational process 

deprived of its real complexity. There are in the economic literature few attempts to model 

informal knowledge diffusion in a more complex way. We will now examine these works. 

Jovanovic and Rob (1989) presented a model in which knowledge was defined as a 

public good which is exchanged through pairwise meetings. The authors define 

incremental improvements in knowledge as a complex process of assembling different 

ideas by means of information exchange by heterogeneous agents. The new insight 

brought by Jovanovic and Rob is that knowledge is defined as something more complex 

than a binary variable and, therefore, that growth of knowledge can be defined as an 

interactive process tightly linked to its diffusion. 
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Cowan and Jonard (1999) made a subsequent attempt to study the effects of 

incremental innovations and their diffusions over a network of heterogeneous agents. 

Knowledge in their model is considered as a vector of values and is exchanged via a 

simple process of barter exchange. Depending on the network structure, the authors found 

that there is a trade-off between the speed of knowledge diffusion and the variance of 

knowledge. In other words, there is a spectrum of states of the world varying from a 

situation of high knowledge inequality and fast knowledge diffusion (i.e. small-world) to 

the opposed situation, more equal in terms of knowledge variance but less efficient in 

terms of knowledge diffusion.  

Along the lines of Cowan and Jonard (1999), Morone and Taylor (2001) defined a 

model in which agents exchange knowledge by means of face-to-face interactions. The 

network structure was endogenous to the model and could vary over time. The authors 

showed how small-world networks emerged and coexisted with both a very unequal and a 

very equal diffusion of knowledge, depending upon the initial conditions. The model 

presented in the following section could be considered an extension of Morone and Taylor 

(2001) as it departs from similar assumptions but develops a more complex learning 

structure. 

 

3.   MODEL DESCRIPTION 

We assume a population of N agents distributed over a grid that resembles the 

geographical configuration of the metropolitan area of Greater Santiago de Chile. The grid 

is divided into 34 portions, each corresponding to a defined district of Santiago and thus 

having different dimensions and different population densities. Each agent is initially 

assigned a district and then allocated to a cell at random within that district. However, 

agents do not occupy all the cells of the grid, and each occupied cell can have only one 

agent. Neighbourhoods, which may contain cells from several districts, are constructed 

according to the von Neumann definition: those cells adjacent in the four cardinal 

directions and within the agent’s visible range. The initial local-network is created by 

connecting an agent with all other agents located within her/his neighbourhood. We also 

define a cyber-network as the ideal network connecting all those agents which have access 

to the Internet. The cyber-network generates a second system which has no geographical 

dimension but connects agents located in far distant regions through ICT support. As 

opposed to the local-network, all agents who have access to the Internet are neighbours 

within the cyber-network (i.e. the visibility is equal to the size of the system). Each agent 
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has a list of acquaintances which includes the members of the local-network and the cyber-

network. Data, which is used to initialise the model, is a sub-sample of the 1998 edition of 

the Encuesta de Ocupación y Desocupación, and will be described more fully later. 

Our geographical network is expressed in graph notation following the standard 

definition: “a graph G consists of a nonempty set of elements, called vertices, and a list of 

unordered pairs of these elements called edges” (Wilson and Watkins, 1990). In our 

simulation vertices correspond to agents and edges are the agents’ connections. Formally, 

we have G (I, Γ), where I = { 1,…, N}  is the set of agents, and Γ = {Γ (i), i ∈ I}  gives the list 

of agents to which each agent is connected. This can also be written Γ(x) = { (y∈ I \ { x}  | 

d(x, y) ≤ ν) ∪∪∪∪  (y∈ ω)} , where  d(x, y) is the length of the shortest path from agent x to agent 

y (i.e. the path which requires the shortest number of intermediate links to connect agent x 

to agent y), ν (visibility), as already mentioned, is the number of cells in each direction 

which are considered to be within the agent’s spectrum, and ω defines the cyber-space, 

which by definition encompasses all those agents endowed with ICT facilities (i.e. 

computers connected to the Internet). Intuitively, Γx (we will use this notation rather than 

Γ(x) from now on) defines the neighbourhood of the agent (vertex) x. 

The unit of time we define in our model is called the cycle. In each cycle, all 

individuals are sorted into a random order, and then each is permitted to interact with one 

acquaintance. Each interaction is aimed at diffusing knowledge. Each agent is endowed 

with a cognitive map (CM), which contains information on the level and the kind of 

knowledge possessed by her/him. The structure of the CM is that of a tree, where each 

node corresponds to a bit of potential knowledge and each edge corresponds to acquired 

knowledge. We will return to the cognitive map in the next section.  

Initial acquaintances in the local-network are the immediate neighbours (i.e. those 

within the visible spectrum). Subsequently, an agent can learn of the existence of other 

agents through interactions with her/his acquaintances (i.e. she/he can be introduced to the 

acquaintances of her/his acquaintances). A new connection is made if the selected 

acquaintance is connected to another individual of whom she/he is not aware, where that 

individual was the one the acquaintance interacted with in the last cycle (this would tend to 

avoid the situation where it is introduced to one that has a low preference and not 

considered to be a good choice). Moreover, agents can stop interacting with some of their 

acquaintances if the connection does not tend to result in gain interactions and is therefore 

no longer useful.3 Therefore the number of acquaintances changes over time, but does not 
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necessarily increase over time. In this way we introduce a dynamic element into the 

network structure.  

Having defined Γx as the set of initial acquaintances of agent x (or first generation 

connections), we define ϕx,t as the set of acquaintances of the acquaintances at time t (or 

next generation connections), and the individual txtm ,ϕ∈  who is added at each t. We also 

define tx,ϑ  as the set of acquaintances dropped at time t and the individual txtn ,ϑ∈  who is 

dropped at each t. Now we can define the total set of acquaintances for individual x at time 

t=T as:  

 

( ) TxTxxTx ,,, /ϑϕ∪Γ=Φ     (1) 

 

Each acquaintance has an associated strength, ( )1,05.0∈τ , which is a measure of the 

strength of the relationship from the agent to her/his acquaintance. Note that this model is 

not constrained to have symmetry of relationships between agents.  

We define a rule governing how an agent chooses an acquaintance to interact with. In 

doing so, we make the assumption that an agent prefers interacting with acquaintances 

with whom she/he has strong relations. Agent y will be selected for interaction with agent 

x with probability given by:4 

 

( )
∑ Φ∈

=
i

x
i

x
yx yp
τ

τ
,     (2) 

 

Diffusion interaction is based on the transmission of knowledge. However, in this 

model, agent interaction is not based on the assumption that each agent has, at any moment 

in time, full information about other agents’ knowledge. Rather, each agent will build 

internal models of the likelihood of having gain interactions through a process of updating 

the strength of relationship between the agent and her/his acquaintances τi, (where i = { 1, . 

. . , Φ} ). We define a ‘gain interaction’ as the case where an agent increases her/his 

knowledge as the result of an interaction. Each cycle, the strength of the relationship is 

adjusted (we drop for simplicity the index of the agent and use it only when strictly 

necessary) as follows: 

 



 8

βεττ −= −1,, titi      (3) 
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As already mentioned, τi is bounded between 0.05 and 1. Whenever the τi attached to 

any acquaintance reaches the lower threshold of 0.05, the acquaintance is dropped from the 

acquaintances list. In other words, we assume agent memory decay in our model. 

However, if the acquaintance is a neighbour (i.e. an acquaintance asserted at the beginning 

of the simulation), then she/he is not dropped (i.e. they can reach the lower threshold of 

preference, but are not dropped from our acquaintance list). This is due to the fact that 

initial acquaintances are geographical neighbours with whom we keep meeting unless we 

move to a different neighbourhood (an option which is not considered in our simulation 

model). 

Equations (2) and (3) together define our model of ‘preferential acquaintance selection’ 

where agents gather, over time, information on the opportunities for learning interactions, 

which they use to develop internal models of interaction preference. We suggest this 

process enables agents to make better choices of acquaintances and learn more efficiently. 

In the following section we describe how the (knowledge) diffusion interaction takes 

place. In doing so we will describe in greater detail how the cognitive map of each agent is 

constructed and how this ‘structured’ knowledge is important in defining the model of 

interactive learning. 

 

4.   COGNITIVE MAP: IMPLICATIONS FOR KNOWLEDGE DIFFUSION 

One of the main limitations of the simulation models which aim to formalise the 

process of knowledge diffusion as an incremental process (Cowan and Jonard, 2000; 

Morone and Taylor, 2001) is the oversimplifying assumption that knowledge is 

accumulated as a stockpile (i.e. a vector of cardinal numbers indicating the level of 

knowledge). The roots of this problem are to be found in the distinction between 

economics of information and economics of knowledge. As pointed out by Ancori et al. 

(2000), the economics of knowledge differs from the economics of information in the 

sense that knowledge is no longer assimilated to the accumulation of information in a 
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stockpile. The distinction between these two concepts has been repeatedly ignored by a 

certain branch of the economic literature (economics of information), which does not 

consider the cognitive structure that agents use to elaborate knowledge.  

Following this distinction, Ancori et al. (2000) develop an appreciative model of great 

interest to us: according to the authors, new knowledge is acquired “by a backward process 

through which the new knowledge is confronted and articulated with previous experience. 

[…] the appropriation of crude knowledge – i.e. its integration in one’s cognitive context – 

is not the result of a transmission, but rather the result of a re-engineering process” (Ancori 

et al., 2000: 267). What the recipient agent is basically doing is de-codifying the 

knowledge received in order to be able to position it in her/his own cognitive map.  

We can think of the cognitive map as a tree in which each vertex (node) represents a 

piece of crude knowledge and each edge (link) represents knowledge that we have already 

mastered and learned how to use.  

  

               Figure 1.   Cognitive Map 

 

 

In the graphical representation, figure 1 above, we present an example cognitive map. 

This shows mastered knowledge as active nodes on the map (the coloured nodes), while all 

the other possible nodes which would complete the tree represent knowledge that at 

present is not in our cognitive map but could be activated through individual as well as 

interactive learning.  

As assumed by Ancori et al., knowledge demands knowledge in order to be acquired; 

hence, in order to activate a new node it would have to be directly connected to active 
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(coloured) nodes. Moving from left to right in the cognitive map we move from less to 

more specialised knowledge. This observation justifies the assumption that new nodes can 

only be activated (i.e. new knowledge can be acquired) if they are directly connected to 

active nodes.   

Each agent is initially endowed with a different cognitive map, which depends upon 

her/his level and kind of education (measured as years of schooling and kind of school 

attended). Each column corresponds to a higher level of education.5 Moreover, once 

education becomes specialised6 the cognitive map will develop only in certain areas, 

showing more pieces of knowledge in those areas in which the agent is knowledgeable.  

It is worth nothing here that in our model there is no knowledge creation, hence it is 

bounded to reach a stationary state in which no more knowledge exchange is possible (i.e. 

the CM being bounded in the number of columns and, therefore, in the number of 

knowledge nodes). In an ideal situation (i.e. characterised by a fully integrated system 

without any excluded agent or cluster of agents), the stationary state would be reached 

when all the agents have acquired all the possible knowledge (i.e. all cognitive maps are 

saturated). Nonetheless, the presence of isolated agents might generate a multiple 

equilibria situation. As a final note, it is important to mention that in the initial situation 

most knowledgeable agents will necessarily have completely saturated CM in one of the 

specialised areas.  

The cognitive map can be formally described as: ),( ΝXCM where X is the set of the 

whole possible knowledge available (i.e. the set of vertices), and N identifies the pieces of 

knowledge activated (i.e. edges of the graph).  

We will now explain how the process of knowledge diffusion takes place. An agent, 

whom we shall call A, contacts an acquaintance, B, in accordance with equation (2). Once 

the contact has been established the algorithm compares the two cognitive maps 

subtracting the cognitive map of A from that of B. This can produce one of two possible 

results:7 

 

CMA (X, N) – CMB (X, N) 








∅≠

∅=
     (4) 
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If the difference between the two sets is a non-empty set there is possibility for 

interaction; if not, agent A will have no interest in interacting with agent B as there is no 

possible gain. 

We present an example that will clarify the issue. The two maps in figure 2 represent 

the cognitive maps of agent A and an acquaintance, agent B. Now, let us assume that agent 

A contacts agent B. If we calculate the distance between the two maps we get 

( ) ( ) ∅≠Ν−Ν ,, XCMXCM BA (this can be clearly observed in figure 3 below). 

 

 

Figure 2.   Comparing two Cognitive Maps 

 

 

 

The first map below reproduces the difference between the two CMs. Once we have 

identified this difference, we need to identify the possible learning region where 

knowledge can be gained (i.e. additional nodes can be activated). To do so we recall the 

requirement that new knowledge has to be pegged to already existing knowledge, and thus 

we can cross out several of the coloured nodes in the first diagram. We conclude that the 

only knowledge that agent A can learn from agent B is that connected to activated nodes. 

Agent A Agent B 
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Figure 3.   Knowledge interaction and the occurrence of learning  

       BA CMCM −                                                     Learning region 

 

 

Defining the nodes of the learning region as Ω, then the actual learning can be 

expressed as pΩ, where p represents the percentage of nodes of the learning region that 

will be activated as a consequence of the interaction. In other words, the agent that has 

started the interaction will activate (learn) p percent of the nodes, selected randomly 

(rounding always to the highest integer in the case of decimal numbers) from the learning 

region.8 Since the number of nodes increases exponentially for each additional year of 

schooling, it implies that the higher the level of education of the interacting agents, the 

higher will be the learning opportunity. This mechanism reflects the idea that the 

‘absorptive capacity’9 of each agent is a positive function of her/his level of education.  

In conclusion, the learning process that we have defined in this model, using a 

cognitive map, extends the idea developed in Morone (2001) where the author defined the 

level of knowledge of each agent as a function of two main variables: 

 

iii IEK +=      (5) 

 

where Ei was the level of education obtained by individual i through a formal process of 

individual learning, and Ii was the level of education of individual i obtained through the 

process of informal interactive learning (face-to-face interaction).  

The latter process of learning was then defined as a function of three variables: agent 

i’s absorptive capacity (ψi); the degree of connectivity of the network (n) within which 

�

�

�

�
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agents interact (θn); and the average level of education of other agents 
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The model developed in this paper aims to explicate, through a simulation exercise, the 

basic idea expressed in equation (6).  We will now briefly introduce the simulation setting. 

Then, we will describe the dataset used to calibrate the simulation. Finally, we will present 

the simulation results and their implications. 

 

 

5.   SIMULATION EXPERIMENTS  

We performed simulation experiments with a population of 232 agents allocated over a 

grid that resembles the map of Greater Santiago de Chile. The relative populations of each 

of the 34 comuna (districts) composing the grid are respected, defining a grid with 

different levels of density over the whole map. The grid is composed of a total of 

approximately 2000 cells and has an approximate overall density of one agent per 8 cells. 

Each agent has a visibility ν = 2, meaning that she/he can see the two cells situated in the 

four cardinal directions (North, South, East and West). The initial knowledge is defined by 

a cognitive map constructed according to a sample drawn from Encuesta de Ocupación y 

Desocupación regarding years of schooling and kind of schooling, as described above. 

The basic objective of the simulation experiments was to test whether knowledge 

diffuses homogeneously throughout the population or whether it follows some biased path 

generating divergence and inequality. In particular we shall investigate differences 

amongst the modelled districts of Santiago and amongst core and periphery areas of the 

geographical grid. We also examine the efficiency of the model of ‘preferential 

acquaintance selection’ with which the agents are endowed. We investigate the impact on 

both individual learning and on system-level knowledge diffusion by comparing with the 

case where there is no preferential selection.  
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The model was programmed in the Strictly Declarative Modelling Language (SDML) 

developed at the CPM (Wallis & Moss, 1994) to support the modelling of social processes 

with multi-agent systems. The results were analysed using the graphical output capabilities 

of the SDML platform and the network analysis software toolkit UCINET 5.0 (Borgatti, 

Everett, & Freeman, 1999). 

 

5.1   Data Description 

As already mentioned, the data used for the simulation is a sample of 232 agents 

obtained from the 1998 edition of the Encuesta de Ocupación y Desocupación of the 

University of Chile. This survey has been performed every year since 1957 and it covers a 

sample of approximately 4000 households (with approximately 11000 individual 

observations) located in the Greater Santiago area.10 The data collected covers: 

demographic information; occupational information; educational information; and wage 

information. The 1998 survey includes additional information on effective years of 

working experience; number of repeated school years; kind of school attended 

(characterised according to the funding system11 and the rural/urban location); parents’ 

level of education; religion; weight; height; and finally, use (or not) of a computer at work. 

The variables that are of interest to our simulation experiment are the following: 

district of residence, years of schooling, kind of schooling, and use of computers at work. 

We will use these variables to distribute agents over the geographical grid, to build the CM 

of each agent and to construct the cyber-network. We consider male and female agents 

aged between 14 and 65. We chose this range of age as it appears to be the best 

representative sample of active population engaged in both interactive learning and 

individual learning.12  We present below some summarising tables that describe the main 

statistics of our data. 

 
Table 1.   Original database 

 

 
 

Variable Num. of Obs. Mean Std. Dev. Min. Max.

District 7732 18.64602 10.28054 1 34
Schooling 7732 10.90184 3.892597 0 19

Kind 7732 2.504268 1.405629 0 6
Computer 7732 0.146275 0.353404 0 1
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Table 2.   Simulation sample database 

 

As expected, the two distributions are very similar, and in particular all the variables 

considered have similar standard deviations. In the following two graphs we plot the 

(kernel) density functions of the schooling variable for both databases (the original survey 

and the simulation sample).  

 
 
Figure 4.   Original database 
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Variable Num. of Obs. Mean Std. Dev. Min. Max.

District 232 18.78017 10.45332 1 34
Schooling 232 11.15517 3.758058 0 18

Kind 232 2.577586 1.409005 0 6
Computer 232 0.1422414 0.350052 0 1
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Figure 5.   Sample database 
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No significant differences can be detected between the two distributions. Both series 

have one absolute maximum and two local maxima respectively at the right and the left of 

the absolute maximum. This confirms the fact that the sub-sample is representative of the 

original sample. A more detailed analysis of the two datasets is presented in the annex. 

 

5.2   Results and Interpretation 

After letting agents interact for two hundred cycles we observe significant changes in 

the knowledge patterns. Indeed the average number of activated nodes increases 

substantially over the whole period, showing that the system is becoming more 

knowledgeable.13 This is not surprising since agents can only increase their knowledge 

level (i.e. there is no loss of knowledge).  
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Figure 6.   Changes in the average level of knowledge 

   Source: Simulation results 

 

Plotting µ we can observe how first the average number of activated nodes grows very 

fast, then after approximately 80-100 cycles there is a turning point (inflection point), after 

which µ grows more slowly. Finally, after about 150-160 cycles, the mean curve starts 

levelling off, meaning that the system is reaching a stable equilibrium.14 

To explain these results, we first consider the dynamics underlying the structure of 

knowledge in the model. The number of fully saturated agents increases over time, and as 

agents approach this state they have a reduced potential for learning, i.e. the learning 

region becomes smaller. However, on the other hand, in the early stages of the simulation 

this region tends to widen in the CM of the majority of agents, giving the potential for 

greater gains. In addition, agents will have increased opportunities to gain from 

interactions as CMs become more heterogeneous. For example, two agents with identical 

schooling will not be able to gain from an interaction in cycle 0, whereas later in the 

simulation they most likely will experience a small gain. This begs the question: to what 

extent is the observed increase in knowledge due to the widening of the learning region 

(i.e. the structure of the CM), and to what extent is it due to agents making better choices 

for interaction (i.e. the preferential model of acquaintance selection). In the following 

scenario we shall test the hypothesis that the preference model for choosing among 

acquaintances is an efficient mechanism. To help us analyse these differences, we 

introduce another measurement, the ‘percentage of gain interactions’, which tells us how 

successful the learning is on an individual level. As shown in figure 7, our model of 

preferential selection appears to be very accurate since the percentage of gain interactions 

increases very sharply in the first 20 cycles and is constantly higher than 90% for more 
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than 100 cycles. Then it starts decreasing when the system approaches a stable 

equilibrium. 

A different picture emerges when we run the same simulation without the preferential 

model.15 The number of gainful interactions is constantly smaller. Over the first 140 

cycles, the simulation with preferential model is approximately 25% more efficient. 

Moreover, the efficiency gap (i.e. the distance in percentage gain interactions) grows 

bigger over the whole time span. After 140 cycles, when the model starts converging 

towards a stationary equilibrium, the speed at which the efficiency gap grows accelerates. 

In the last cycle the simulation with preferential model becomes about 70% more efficient.  

The increase in the efficiency gap between the two simulations is due to the fact that 

agents keep meeting new acquaintances and - as the number of acquaintances grows bigger 

- the chances to select the right agent with whom to interact decrease. Moreover, this 

mechanism is accelerated after 140 cycles, as the CMs start becoming saturated: when the 

learning opportunities start decreasing (i.e. the learning regions become smaller) that is the 

moment when agents really need to know with whom it is worth interacting. Figure 7 

below shows the differences between the two models so far discussed. 

 

Figure 7.   Percentage of gainful interactions. Studying the efficiency of the system 

    

     Source: Simulation results 
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members are almost always gainful, while this is not the case for interactions which take 

place within the same district. 

 

        Figure 8.   Percentage of gainful interactions within districts and cyber-network 

        

    Source: Simulation results 
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Figure 9.   Kernel density functions of knowledge and normal distribution 

 
Source: Simulation results 

 

As we can see from the figure above, there is a clear trend in the distributional changes: 

initially, there is a large majority of agents with a low level of knowledge (the mean of the 

distribution is in the left hand side of the first Cartesian diagram). Over time, the mean of 

the distribution shifts from left to right: after 40 cycles knowledge is almost normally 

distributed, and then it becomes skewed to the right hand side. This distributional dynamic 

shows clearly that the society has changed from one in which there is a majority of low 
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knowledgeable people and an ‘intellectual oligarchy’, to a more mature society with a 

majority of knowledgeable people and some ‘pockets of ignorance’. In other words, the 

final knowledge distribution is the mirror image of the initial one. To our understanding 

this change has to be interpreted as a substantial improvement in terms of knowledge 

distribution. This intuition is indeed corroborated by the inequality index.16 

In the figure below we report the Gini index calculated over the 200 cycles of the 

simulation. We can observe how knowledge inequality constantly decreases over the first 

100 cycles to then stabilise.  

 

Figure 10.   Knowledge Inequality Dynamics (Gini Index) 

Source: Simulation results 
 

So, overall the society has quickly become less unequal as well as more knowledgeable. 

This should be interpreted as a substantial improvement. Nonetheless, it will be interesting 
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indicates the severity of the knowledge gap rather than just the number of people with a 

poor level of knowledge. 

 

Figure 11.   Poverty measures applied to knowledge 

   Source: Simulation results 
  

The figure above shows how the headcount ratio first increases and then decreases. This 
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When we look at the mean and variance dynamics disaggregated at district level (see 

figure 9) we can draw two conclusions. First, some initially backward districts are able to 

catch up with the most knowledgeable ones, while others are marginalised from the 

learning process. Interestingly, the catching up process is not strongly correlated with the 

0

5

10

15

20

25

0 20 40 60 80 100 120 140 160 180 200

headcount ratio poverty gap ratio

Cycles

Le
ve

ls
 o

f k
no

w
le

dg
e 

po
ve

rty



 23

initial condition, meaning that some districts which start with a very low level of 

knowledge are able to reach, on average, very high levels of knowledge. At the same time, 

other districts which start from similar levels of initial knowledge are unable to catch up. 

 

Figure 12.   Changes in knowledge average and variance by districts 

 

The second conclusion is obtained when looking at the variance distribution by district. 

Some districts become less and less equal while others converge towards a more even 

equilibrium. In this case too the initial condition does not determine the twofold dynamic. 

In order to understand which are the driving forces that cause only some backward 

districts to catch up, we need to investigate the actual geographical distribution of 

backward areas in the map of Greater Santiago. The four pictures reported in figure 13 

below show the map of the Greater Santiago region divided into 34 districts.18  

 

Mean levels by districts Variance levels by districts 

Source: Simulation results  
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Figure 13.   Changes in knowledge mean by districts  

 

Source: Simulation results 
 

The white areas adjoining the border of the map are not included in the Santiago 

district. The changes in the colours show the relative changes in average level of 

knowledge at different stages of the simulation (absolute changes are showed in figure 12).  
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It is clear from the first picture that initially, the most backward districts are those 

situated at the western periphery of the map. In general, central districts have an initially 

higher mean level of knowledge. There are a number of districts in the semi-periphery also 

having low mean. On average, the periphery has a slightly better initial condition than the 

semi-periphery (this is due to the fact that we also include in the periphery rich residential 

neighbourhoods such as Las Condes, Lo Barnechea and Vitacura located north-east in the 

map). The situation changes over time, showing how semi-peripheral districts are able to 

almost catch up with central districts, while far-peripheral districts are marginalised from 

knowledge growth. 

To complete our analysis, we have divided the whole region into three macro districts,19 

(i.e. centre, semi-periphery, and periphery) and calculated the average level of knowledge 

for each macro district over time. In figure 14 below we can see the core-periphery 

dynamic more clearly. It emerges clearly how peripheral districts are those unable to catch 

up (in spite of a better initial condition with respect to semi-peripheral districts). We can 

therefore conclude that the geographical dimension plays a crucial role in determining the 

long-term equilibrium. 

 A further insight into this dynamic is provided by the changes in the variance 

calculated at macro district level (i.e. mean of district variance). The periphery and semi-

periphery are the areas in which the variance grows more considerably over the long 

period. On the other hand, the average level of the intra-district variance decreases in the 

case of the central districts. Comparing with the earlier figure 12, this points out that the 

distribution of knowledge becomes more unequal amongst districts as well as within them. 

Hence, less educated people who live in peripheral districts will be marginalised with 

respect to those who live in central districts, as well as from the most educated people 

within the peripheral macro-district. 
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Figure 14.   Centre-Periphery dynamics (Average level of knowledge and Average change 

in knowledge variance by districts)      
    

        Knowledge variance by districts                       Average knowledge by districts 

Source: Simulation results  
 

From the results obtained so far we can conclude that initial conditions do not matter 

for those people who live in central or semi-peripheral neighbourhoods, while they do 

matter for those living in peripheral areas. An intuitive explanation of this result is that if a 

person had not had the opportunity to acquire knowledge through individual learning but 

does have the chance to interact with many people, then she/he will be able to cover, in the 

long run, the initial gap through interactive learning. On the other hand, if a person has a 

low initial level of knowledge and she/he lives in a peripheral neighbourhood, then she/he 

will be marginalised from society, being actually caught in a poverty trap mechanism.   
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and the average cliquishness: 
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where X (y, z) = 1 if y and z are connected at time t (no matter whether the connection is a 

first generation or next generation connection), and X (y, z) = 0 otherwise.  

For calculating the average path length and cliquishness of a random network, we shall 

use the same approximation as Watts and Strogatz (1998) that ( ) nNt lnln≅randomL  and 

( ) Nnt ≅randomC , where n is the average number of connections of each agent and N is the 

total number of agents. The criteria for identifying the network as small worlds are that 

( ) ( )tt randomLL ≅  and ( ) ( )tt randomCC >> .  

We shall compare our dynamic network with a random one at different stages in the 

simulation to show whether or not the small worlds architecture is emerging in our system. 

Since the number of connections in our network is not constant (due to the mechanism by 

which agents make acquaintances of their acquaintances), in order to make an appropriate 

comparison we need to construct the random network with an equivalent number of 

connections. We shall, therefore, construct several random networks, one for comparison 

at each stage of interest of the simulation. The average path length and cliquishness will be 

calculated at both stages in the simulation. If, when comparisons are made with the 

random network, we find that the Watts-Strogatz criteria are observed, this will be 

evidence to suggest that a small worlds network structure is emergent from our model. 

In Table 3 below we present our results for the small world calculations. Looking at this 

figure we observe that L (average path length) is substantially stationary, while on the 

other hand, C  (average cliquishness) first decries and then increases again. The initial 

situation is definitely a small world with ( ) ( )tt randomLL ≅  and ( ) ( )tt randomCC >>  (i.e. where 

short average path length and high degree of cliquishness coexist). Then, after fifty cycles, 

the architecture of the network changes slightly (with a cliquishness which decreases by 

more than 60%). After another 50 cycles, the network evolves again into a small world and 

remains stable until the end of the simulation.  
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Table 3.  Small world calculation results 

        Source: Simulation results  
 

From the results obtained we can conclude that the network structure of the model 

evolves over time. This dynamic process is particularly interesting since it shows that the 

network evolves into a very efficient network structure (i.e. small world), by means of an 

individual learning process, which takes place through the model of preferential 

acquaintance selection described above. In other words, what is efficient for the individual 

is also efficient for the network as a whole. 

 

6. CONCLUSION 

In this paper we have modelled the dynamic process of knowledge diffusion, where 

knowledge is structured non-linearly as a cognitive map. The process through which agents 

interact allows each agent to learn from her/his acquaintances and to increase her/his 

knowledge in the learning region of the CM. Whether or not the interaction is gainful will 

depend upon the precise structure of that knowledge. The simulation was calibrated on the 

Greater Santiago region, using a sub-sample of the original database obtained from the 

Encuesta de Ocupación y Desocupación collected by the University of Chile for the year 

1998.   

We have also studied the network properties of the model over the whole simulation. 

We observed how the network architecture of the model changed over time, showing that 

the model evolved into a very efficient network structure (i.e. small-world) by means of an 

individual learning process, which takes place through the model of preferential 

acquaintance selection. 

C L

Simulation Results Cycle 1 0.4396 2.1727
Cycle 50 0.1425 2.3082
Cycle 100 0.2661 2.9281
Cycle 150 0.2853 3.2699
Cycle 200 0.2578 2.9669

Random Network Cycle 1 0.0388 2.4789
Cycle 50 0.0345 2.6193
Cycle 100 0.0345 2.6193
Cycle 150 0.0302 2.7991
Cycle 200 0.0302 2.7991
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The results concerning the knowledge diffusion process are very interesting: in 

presence of high level of (knowledge) inequality there is a high risk of exclusion for those 

people initially endowed with low level of education. Moreover, we studied the spatial 

dimension of the exclusion process, finding that the ignorance trap mechanism is more 

likely to take place if an initial situation of low level of knowledge is coupled with 

geographical exclusion. In other words, those people who start with a high level of 

individual learning (i.e. schooling) will always be able to escape from the ignorance trap 

mechanism, while more backward people might be trapped if their low level of knowledge 

is cumulated with geographical exclusion. To summarise, each agent can find her/himself 

in one of the following four situations:  

 

Figure 15.   Possible long-term equilibria 

 

Source: Simulation results  
 

These findings are extremely important from a policy prescription perspective. In the 

light of the new findings, two possible policy actions could avoid the occurrence of an 

ignorance trap: the policy maker could increase the level of education of more backward 

and marginalised peoples, and/or reduce the geographical gap between centre and 

periphery. This latter policy could be implemented through the development of 

infrastructure bridging the centre-periphery distance, as well as through the development 

of ICT. In other words, the exclusion risk could be minimised through the development of 

a more comprehensive cyber-network, so that also peripheral agents will have the same 

opportunity to interact with central and semi-peripheral agents. 
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ANNEX 

Table A1   Schooling distribution, original sample 

 

 

Table A2   Schooling distribution, simulation sample 

 

Schooling Freq. Percent Cum.

0 144 1.86 1.86
1 26 0.34 2.2
2 68 0.88 3.08
3 134 1.73 4.81
4 159 2.06 6.87
5 127 1.64 8.51
6 390 5.04 13.55
7 157 2.03 15.58
8 724 9.36 24.95
9 553 7.15 32.1

10 625 8.08 40.18
11 480 6.21 46.39
12 2155 27.87 74.26
13 415 5.37 79.63
14 312 4.04 83.67
15 205 2.65 86.32
16 289 3.74 90.05
17 491 6.35 96.4
18 231 2.99 99.39
19 47 0.61 100

Total 7732 100

Schooling Freq. Percent Cum.

0 1 0.43 0.43
2 2 0.86 1.29
3 2 0.86 2.16
4 9 3.88 6.03
5 5 2.16 8.19
6 10 4.31 12.5
7 6 2.59 15.09
8 20 8.62 23.71
9 16 6.9 30.6

10 20 8.62 39.22
11 11 4.74 43.97
12 68 29.31 73.28
13 12 5.17 78.45
14 6 2.59 81.03
15 5 2.16 83.19
16 12 5.17 88.36
17 19 8.19 96.55
18 8 3.45 100

Total 232 100
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Table A3   Geographical distribution, original sample 

 

 

 

 

 

 

 

 

 

 

District Freq. Percent Cum.

1 253 3.27 3.27
2 98 1.27 4.54
3 377 4.88 9.42
4 195 2.52 11.94
5 199 2.57 14.51
6 86 1.11 15.62
7 198 2.56 18.18
8 176 2.28 20.46
9 177 2.29 22.75

10 145 1.88 24.62
11 211 2.73 27.35
12 290 3.75 31.1
13 305 3.94 35.05
14 270 3.49 38.54
15 242 3.13 41.67
16 283 3.66 45.33
17 153 1.98 47.31
18 138 1.78 49.09
19 515 6.66 55.76
20 156 2.02 57.77
21 86 1.11 58.89
22 261 3.38 62.26
23 73 0.94 63.2
24 103 1.33 64.54
25 208 2.69 67.23
26 129 1.67 68.9
27 466 6.03 74.92
28 151 1.95 76.88
29 77 1 77.87
30 307 3.97 81.84
31 180 2.33 84.17
32 202 2.61 86.78
33 529 6.84 93.62
34 493 6.38 100

Total 7732 100



 32

Table A4   Geographical distribution, simulation sample 

 

 

 

 

 

 

 

 

 

 

District Freq. Percent Cum.

1 5 2.16 2.16
2 2 0.86 3.02
3 20 8.62 11.64
4 3 1.29 12.93
5 8 3.45 16.38
6 2 0.86 17.24
7 5 2.16 19.4
8 6 2.59 21.98
9 7 3.02 25

10 1 0.43 25.43
11 8 3.45 28.88
12 9 3.88 32.76
13 6 2.59 35.34
14 6 2.59 37.93
15 5 2.16 40.09
16 6 2.59 42.67
17 1 0.43 43.1
18 5 2.16 45.26
19 15 6.47 51.72
20 11 4.74 56.47
21 3 1.29 57.76
22 5 2.16 59.91
23 3 1.29 61.21
24 4 1.72 62.93
25 8 3.45 66.38
26 4 1.72 68.1
27 15 6.47 74.57
28 6 2.59 77.16
29 3 1.29 78.45
30 8 3.45 81.9
31 6 2.59 84.48
32 6 2.59 87.07
33 13 5.6 92.67
34 17 7.33 100

Total 232 100
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Table A5   Distribution of kind of school, original sample 

 

 

Table A6   Distribution of kind of school, simulation sample 

 

 

Table A7   Distribution of use of computer at work, original sample 

 

 

Table A8  Distribution of use of computer at work, simulation sample 

 

 

 

 

 

Kind Freq. Percent Cum.

0 139 1.8 1.8
1 1775 22.96 24.75
2 2995 38.74 63.49
3 1029 13.31 76.8
4 474 6.13 82.93
5 1305 16.88 99.81
6 15 0.19 100

Total 7732 100

Kind Freq. Percent Cum.

0 1 0.43 0.43
1 53 22.84 23.28
2 89 38.36 61.64
3 33 14.22 75.86
4 13 5.6 81.47
5 42 18.1 99.57
6 1 0.43 100

Total 232 100

Computer Freq. Percent Cum.

0 6601 85.37 85.37
1 1131 14.63 100

Total 7732 100

Computer Freq. Percent Cum.

0 199 85.78 85.78
1 33 14.22 100

Total 232 100
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Macro-districts Composition: 

Centre: 1, 4, 5, 6, 7, 21, 26, 30, 31, 32; 

Semi-periphery: 8, 9, 10, 11, 12, 13, 15, 17, 18, 20, 22, 25;  

Periphery: 2, 3, 14, 16, 19, 23, 24, 27, 28, 29, 33, 34. 
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Figure A1.  Map of Greater Santiago Region and District Codes 
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Notes 
                                                           
1 See among others: Beyer 2000; Morone 2001. 
2 See, among others, Ellison (1993, 2000), Anderlini and Ianni (1996), Berninghaus and Schwalbe (1996), 
Goyal (1996), Akerlof (1997), Watts (2001). 
3 An intuitive example would be that of a student who stops interacting with her/his teacher when she/he 
feels that she/he has nothing to learn from the interaction, or when her/his knowledge surpasses that of 
her/his teacher. Another example could be that of two equally educated agents which might stop 
communicating when they become specialised in two very different areas, so no shared interest remains.   
4 In this way we assume that agents are constrained by ‘bounded rationality’ in the sense that they respond to 
utility signals. This does not mean that they maximise utility (Katz, 2001). 
5 Moving from left to right, each pair of years of schooling corresponds to a complete column activated. We 
set the initial level of education (0 to 2 years of schooling) as three full columns activated (with the third 
column containing four nodes), then additional pairs of years of schooling correspond to an additional 
column in the cognitive map. 
6 After the eighth year of schooling students choose to specialise either in humanistic-scientific general 
education or technical-professional education. 
7 We define the cognitive map only as a function of X and N because at this stage we are not interested in the 
depth of knowledge. 
8 In the simulation model p is set equal to 0.1. 
9 We refer explicitly to the work of Cohen and Levinthal (1989) on returns from R&D. The concept of 
individual absorptive capacity has already been developed in Morone (2001). 
10 This region, called Región Metropolitana, includes 42% of the economically active national population 
(see: Bravo et all 1999:7).   
11 Chilean schools can be entirely funded by the government, partially funded by the government or entirely 
private. 
12 Agents younger than 14 years old are probably engaged mainly in individual learning as schooling 
represent a major part of their life, while people over 65 are probably less likely to be involved in knowledge 
exchange processes (because they are already too wise!). 
13 Given the structure of knowledge expressed by the cognitive map, we calculate changes in knowledge 
based on the total number of activated nodes for each agent. 
14 Longer simulations show how the curve completely levels off, meaning that the system reaches a long-run 
stable equilibrium. 
15 The only change was in the preferential selection: the value τi defined in equation (3) was not updated so it 
remained equal to 1. No acquaintances were dropped. Apart from that the two simulations here compared are 
identical. 
16 We studied distributional changes by means of inequality and poverty measures used typically in income 
distribution analysis. We did so because we are interested in studying the distributional properties of the 
model as well as its network and efficiency properties.  
 
17 We call ignorance line what is usually called poverty line. 
18 A detailed map with the district codes is reproduced in the annex. 
19 A detailed description of each macro-district composition is reproduced in the annex. 
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